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beliefs

Most NLP Tasks. E.g. Ainclude extra-linguistics?

e POS Tagging e Additive Inclusion

e Document Classification ) C

e Sentiment Analysis e Adaptive Extralinguistics

e Stance Detection o Adapting Embeddings
e Mental Health Risk Assessment o Adapting Models

[ J

(language modeling, QA, ... ¢ Correcting for bias
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e.g. Document Classification: Stance

e.g., pro gun

control?
yes, no

Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., & Cherry, C. (2016).
Semeval-2016 task 6: Detecting stance in tweets. In Proceedings of the
10th International Workshop on Semantic Evaluation.
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Natural language is generated by people.

personality
demographics
emotional states

political ideology

lingquictic ctyle
(Pennebaker, 2007)
latent vser traite
(Kulkorwi et af,, 2018)
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Human Factor

g if language to change depending

0 called “compositional”)
mdividual versus old individual)

What are human “factors”?

Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)
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Human Factors

--- Any attribute, represented as a continuous or discrete variable, of the humans
generating the natural language.

E.g.
e Gender
e Age
e Personality
e Ethnicity
e Socio-economic status
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Adaptation

typically requires putting people into discrete bins



“most latent variables of interest to psychiatrists and personality

and clinical psychologists are dimensional [continuous]”
(Haslam et al., 2012)
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Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
Continuous
_>

Adaptation

Gender Score Features QOriginal Gender Copy
-2 X > X compose(-.2, X)

(Lynn et al., 2017)
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User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(Xa ’U,) — <X, C(fu,l’x)a C(fu,27x)7 e 7C(fu,d7 X)>

User  Factor Augmented Instance

Classes d(x,u)
User 1 F (x,%,0,0,---,0)
User 2 Fy (x,0,%x,0,---,0)
User3 Fy, Fj (x,%,0,%, -, 0)
User 4 Ey, (x,0,0,---, 0, x)

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With k£ domains the
augmented feature vector is of length n(k + 1).

(Lynn et al., 2017)
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Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:
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Main Results

Adaptation improves over unadapted baselines (Lynn et al., 2017)

Latent
No (User

Task Metric | Adaptation Gender Personality Embed)
Stance F1 649| 65.1(+0.2) 66.3(+1.4) 67.9(+3.0)
Sarcasm | F1 739| 751(+1.2) 75.6(+1.7) 77.3(+3.4)
Sentiment | Acc. 60.6 61.0 (+0.4) 61.2 (+0.6) 60.7 (+0.1)
PP-Attach | Acc. 71.0 70.7 (-0.3) 70.2 (-0.8) 70.8 (-0.2)
HON Acc. 91.7] 91.9(+0.2) 91.2 (-0.5) 90.9 (-0.8)
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Problem

User factors are not always available.



Solution: User Factor Inference

past tweets
Niranjan @b_niranjan - Sep 2 v .
There must be a word for trending #hashtags that you know you will regret if you > I nfe rre d fa Cto rs
click. s there?
i s Known
iranjan @b_niranjan - Aug 31 v
Passwords spiral: Forget password for the acnt you use twice a year. Ask for Ag e (S ap et al. 2014 )
reset';I .Can.‘t us(; Erewoug Crtja\lte3 a; new one to forget later. Gender ( S3 D et al. 201 4)
iranjan @b_niranjan - Ju v i
Thrilled to hear @acl2017's diversity efforts as the first thing in the conference. Pe rsona I |ty ( Pa rk et d I . 2 O 1 5 )
0 0 01 B8 Latent
User Embeddings
(Kulkarni et al. 2017)
Word2Vec

TF-IDF



Backeround Size

Using more background tweets to infer factors produces larger gains

personality (cont) user embed (cont)
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Full User Factors Adaptation Pipeline: with latent factors from training

doc-id user-id document d=128

m —> embdngs
m —> embdngs
—> embdngs
m —> embdngs
—> embdngs
—> embdngs

total documents



Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

doc-id user-id document _
d=128 B - -
oo Weon. B g

0 -
D
B

text... gy embdngs
2 -

. ) i
total documents
Step 1: Create User Factors user x factors
d=3

fi, f2, other lower dimension)
16 f1, f2, f3
f1, 2, f3




Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

B - 2

doc-id user-id document

o B
0 O

emb x f1; emb « i7; emb x f3 user x factors

|1 .
n emb x f1; emb < i2; emb x f3 g f1, 2, 3 (or other lower dimension)

emb x f1; emb x f2; emb x f3 gy

f1, f2, f3




Full User Factors Adaptation Pipeline: with latent factors from training

/

Step 3: Train Model _ .
doc-id rating

user-adapted l )

emb x f1; emb < (7; emb x f3

emb x f1; emb < (2; emb x f3

emb x f1; emb x f2; emb x f3

emb x f1; emb x f2; emb x f3



Full User Factors Adaptation Pipeline: with latent factors from training
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Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings
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on Matrix (V)
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Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

[ I A.Savethe
transformation (V)
B3 ) embdngs from PCA during

|| This was training data; ‘Wi embdngs training
now assume test l

doc-id user-id document

embdngs B. Apply V to user
x avg_embeddings
matrix during

N users test/trial.
What about when predicting on

new documents?

total documents (easy as A, B, C) Transformati

on Matrix (V)

emb x f1; emb « i7; emb x f3 user x factors

f1, f2, f3
f1, f2, f3
o crvar crvas R G et socument B2 R 225
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factors just like in
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Ethics In NLP

(3. Bias Correction: Optimize so as not to pick up on

unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)




Ethics in NLP

Bias

Privacy

Ethical Research



Ethics in NLP

Types of bias in NLP tasks:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A
o Selection bias
o Label bias
o Over-amplification

e Error Disparity: Predicts less accurate for authors of given demographics.

e Semantic Bias: Representations of meaning store demographic associations.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Two Examples

R

model

accuracy Th c W I-

VALUE
AGENT 1 AGENT = WOMAN
FOOD ‘ FOOD | MEAT FOOD 7
HEAT @ — HEAT = STOVE [E=
TOOL | KNIFE

HEAT STOVE | =
TOOL | SPATULA = TOOL  SPATULAT
PLACE KITCHEN ‘ PLACE OUTSIDE A PLACE KITCHEN

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing. 2017.

7;t\‘§‘ ==

distance from “standard” WSJ author demog'fé‘bvﬁwi\c»:s |



Two Examples

\

Y

PP 2y ey

model The VV

accuracy

COOKING

AGENT | WOMAN [ AGENT | WOMAN [ g [ AGENT | WOMAN |
FOOD | FRUIT [= FOOD = MEAT [ FOOD Z

HEAT @ HEAT | STOVE [= HEAT | STOVE
TOOL | KNIFE TOOL | SPATULA (= TOOL | SPATULA
PLACE | KITCHEN il PLACE OUTSIDE il PLACE  KITCHEN

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language

“EI'I'OI' Disparity” Processing. 2017.

distance from “standard” WSJ author demog'fé‘b”h“i\és
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Our data and models are (human) biased.

“Outcome Disparity”

Person-level
s attribute = 1
= attribute = 2

|deal Proportion Result from Prediction

“Error Disparity”

Ideal Error Rates Error Rates from Prediction



outcome disparity
The distribution of outcomes, given attribute 4,

is dissimilar than the ideal distribution:
Q(Y)|4) #P(Y)|4)

Target Population

biased
predict outcomes

A

features

mrget
target

(Application Side)

error disparity
The distribution of error (€) over at least two
different values of an attribute (4) are unequal:

Q) # Qe )4)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.
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outcome disparity
The distribution of outcomes, given attribute 4,
is dissimilar than the ideal distribution:

Q(Y|4) #P(Y}4)
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features

source

QModeI Side)
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source

(1 )

arget Population

®
features biased
predict »| outcomes
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\(Application Side) [ ] )

error disparity
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E.g. Coreference resolution:
connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”
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Ethics in NLP

Types of bias in NLP tasks:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A
o Selection bias
o Label bias
o Over-amplification

e Error Disparity: Predicts less accurate for authors of given demographics.

e Semantic Bias: Representations of meaning store demographic associations.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.



Ethics in NLP

Types of bias in NLP tasks:

E.g. Coreference resolution: connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

e Semantic Bias: Representations of meaning store demographic associations.

Work in progres; Hovy et al., 2019



Ethics in NLP

Privacy

e Risk Categories:
o Revealing unintended private information
o Targeted persuasion




Ethics in NLP

Privacy P
e Risk Categories: { e \

o Revealing unintended private information Q‘{\‘
o Targeted persuasion
e Mitigation strategies:
o Informed consent -- let participants know
o Do not share / secure storage
o Federated learning -- separate and obfuscate to the point of preserving
privacy
o Transparency in information targeting

“You are being shown this ad because ...”



Ethics in NLP

Human Subjects Research

Observational versus Interventional



Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

(i) Distinction of research from practice.

(i) Risk-Benefit criteria

(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.









Natural lanquage is generated by people.

What this means for NLP:

1. Qur data are inherently multi-level.
2. Often, there are 'already-available” human attributes.

3. Qur data and modele are (human) biased.




Approaches to Human Factor Inclusion

1. Adaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)

~ N
2. Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

3. Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)



Example 1: Individual Heart Disease

Age predicts
|
affects |
|
\J
: )
predicts

Language



Example 2: Twitter Language + Socioeconomics

zumba gym
vistasession
> training
laying class trainer
wake head personal
bouts eep basicpotty

layin sessionsintense

edlaid workout

dYrest
‘=-oyd pillow ha

hah
i hahahahh?l}e
E

awake . jk
- 'djh 2313

vaIIeY ;p:p:

lakepark Fnsbme

trailhik hahahaha
g n cave




Additive (Residualized Control)
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Additive (Residualized Control)

Challenges:

High-dimensional,
sparse, and noisy.
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Additive (Residualized Control)

Effectively use both low dimensional control features and
high-dimensional, noisy language features:

1. Train a control model using the control values
2.Calculate the residual error and consider it as the new label

3. Train a language model over the new labels



Additive (Residualized Control)

Residualize control (additive model):

Label
|
Extra-linguistics 4[ Predictive Analytics }\
Error (+)— Prediction
l
Language [Language Model
(Zamani et al., EACL 2017) Adaptive model:

Language [L] Label

| |

[e1.L,e2.L, ...,em.L] A[Predictive Model }— Prediction

Extra-linguistics [e1, e2, ..., em]




Additive (Residualized Control)

Effectively use both low dimensional control features and
high-dimensional, noisy language features:

1. Train a control model using the control values
2.Calculate the residual error and consider it as the new label

3. Train a language model over the new labels



Model:

Y=ax,+ Bx, +y

Both learn the same linear model above, but
* Different learning algorithms per variable type.
* Different penalization methods



Residualized Control Model

Control Mode Language Model

9.

Y=« X Ieontrol T+

TTOT t RO /
kb | X Tlanguage 2 2 .‘ﬁ + A

)’ + A=-0.7

Leontrol Llanguage

2 3 LD Y= X Zeontrol + Ve € =7 X Tlanguage + A
Feontrol | a=1,=0 y=03,A=-0.7

Zamani M, Schwartz HA. Using Twitter Language to Predict the Real Estate Market. EACL 2017. 2017 Apr 3:28.




Combining Adaptive and Additive

Two Goals:

adapt to given human attributes
(user factor adaptation,
Lynn, Balasubramanian, Son, Kulkarni & Schwartz,
EMNLP 2017)

predict beyond given attributes
(residualized control;, Zamani & Schwartz, EACL 2017)



Solution: Residualized Factor Adaptation
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Lang.

Controls  Added-
Only Controls

Heart Dis 0.585 0.514 0.608
Suicide 0.414 0.307 0.431
Poor Health 0.602 0.609 0.641
Life Satis. 0.209 0.329 0.335

Avg. 0453 0440  0.503




Lang. All Factors

Controls  Added- Res-
Only Controls  Control

Heart Dis 0.585 0.514 0.608 0.628
Suicide 0.414 0.307 0.431 0.460
Poor Health 0.602 0.609 0.641 0.661
Life Satis. 0.209 0.329 0.335 0.372

Avg. 0.453 0.440 0.503 0.530




Lang. All Factors
Controls  Added- Res- A
Only Controls ~ Control
Heart Dis 0.585 0.514 0.608 0.628 0.635
Suicide 0.414 0.307 0.431 0.460 0.494
Poor Health 0.602 0.609 0.641 0.661 0.674
Life Satis. 0.209 0.329 0.335 0.372 0.352
Avg. 0.453 0.440 0.503 0.530 0.539




Lang. All Factors
Controls  Added- Res-
Only Controls ~ Control 2 =

Heart Dis 0.585 0.608 0.628
Suicide 0414 0.431
Poor Health 0.602 0.609 0.641
Life Satis. 0.329 0.335

IN73 0.453 0.440 0.503




Lang. All Factors
Controls  Added- Res-
Only Controls  Control Z RiA
Heart Dis 0.585 0.514 0.608 0.628 0.635 0.655
Suicide 0.414 0.307 0.431 0.460 0.494 0.510
Poor Health 0.602 0.609 0.641 0.661 0.674 0.682
Life Satis. 0.209 0.329 0.335 0.372 0.352 0.396
Avg. 0.453 0.440 0.503 0.530 0.539 0.560

variance explained (R?)



Natural language is generated by people.

What this means for NLP:

1. Qur dafe are inherently multi-level.
2. Often, there are ‘already-available” human attributes.

3. Qur data and modele are (human) biased.




Natural language is generated by people.

What this means for NLP:

1. Qur dafe are inherently multi-level.
2. Often, there are “already-available” human attributes.

3. Qur data and modele are (human) biased.
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Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A.
O 50 (2017). On the Distribution of Lexical Features in Social Media. Annual
: Meeting of the Association for Computational Linguistics
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O 2 5 O 50 (2017). On the Distribution of Lexical Features in Social Media. Annual

Meeting of the Association for Computational Linguistics
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Data are inherently multi-level.

Message User County
Distribution

1-gram [topic |Lex. |1-gramtopic Lex. |1-gram |topic |Lex.

Power Law | 71

Log-Normal _ ] : 97 | .64 92 .86
Normal

Proportion best fit by the given distribution.

Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A.
(2017). On the Distribution of Lexical Features in Social Media. Annual
Meeting of the Association for Computational Linguistics



Dato. are inherently mulfi-level.

Multi-level Attention and Sequence Model

o [

o [ | [
Attention |\ B

~ B,
Word (C) Word
Attention Attention \ ‘

@mw@mw

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical
Modeling for User Personality Prediction:The Role of Message-Level
Attention. Annual Meeting of the Association for Computational
Linguistics.




Dato. are inherently mulfi-level.

¥

Hidden

BERT +
DAN . . . . . )

(D) Message Hidden

(Park et Attention

al., 2015) ' ' ) ’ )

Multi-level Word Word
Attention ' . . : . Attention Attention

(B)

Multi-level
Attention
+ Ridge

(A)

bold: p <.01

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical
Modeling for User Personality Prediction:The Role of Message-Level
Attention. Annual Meeting of the Association for Computational
Linguistics.




Dato. are inherently mulfi-level.

¥

Hidden

60 | .51 |54 | .51 | .52 A

stoked on the exam schedule !
(F 40 % math midterm ? thank god 3/4 count
al., High

Mult CON dear math midterm : please be gentle . that is all

Att

gota co-op job interview ! woo !

just had some damn good pears . note to self : buy more ? damnit

Mult found free bag of skittles in vending machine , jackpot
Attentuon 5300 OO TIO4 IO TTO0 T I00

+ Ridge ' ' ' ' I GRU |->| GRU |—>| GRU l I GRU |—>| GRU |->| GRU

pold:p <01 ( 1[ O 1[ ) 1[

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical
Modeling for User Personality Prediction:The Role of Message-Level

Attention. Annual Meeting of the Association for Computational
Linguistics.




Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute



E.g. Words distinguishing communities with increases in real estate prices.
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Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute



Differential Language Analysis
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Differential Language Analysis

Methods of Correlation Analysis: > o (@i — ) (yi — )

. \/Z;".l—l(xi — z)? \/Z?—l(yi —9)

e Pearson Product-Moment Correlation
Limitation: Doesn’t handle controls



Differential Language Analysis

Methods of Correlation Analysis: > o (@i — ) (yi — )
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Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Zﬁ-—l(y" y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression

Fit the model: Y, = ,30 4 ,BlXil + JBQXQ + ...+ ,3,71_Xm1 + €;



Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Z%—l(yl y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fit the model. Yz — ;80 + ;BlXil + .IBZX'Z.2 T . T ..B'm.X'm.l + €

Adjust all variables to have “mean center” and “unit variance”:



Differential Language Analysis

Methods of Correlation Analysis: , 2io (@i — ) (3 — 9)

_ no_ -2
e Pearson Product-Moment Correlation \/Z, 1(zi — %) \/ZH(% y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression

Fit the model. }/z — ;80 + ;BlXil =+ .'BQX'Z.2 + ..t ..B'm.X'm.l + €
Adjust all variables to have “mean center” and “unit variance”:
T — [
L = ——
o
’u — Mean

(0 — Standard Deviation



Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Z%—l(yl y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fit the model: Yi=00+ 51X+ 5o X+ ...+ B, X1 + €
Option 1: Gradient Descent:

J=3 (v-3) --“Sum of Squares” Error ?

J(w)




Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Z%—l(yl y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fit the model: Yi=00+ 51X+ 5o X+ ...+ B, X1 + €
Option 1: Gradient Descent:

J=3 (v-3) --“Sum of Squares” Error ?

Option 2: Matrix model: YV — XA I )w)




Differential Language Analysis

Methods of Correlation Analysis: , 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z, 1(zi — ) \/Zm(yz y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fitthe model: Y — dO + leil + BZXZZ + .. .-B'mX'ml + €
Option 1: Gradient Descent:

J=3 (v-3) --“Sum of Squares” Error ?
Option 2: Matrix model: Y = X8 +¢ "
Matrix Computation Solution: |

B=(XTX)"'XTy




Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Z%—l(yl y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fitthe model: Y — dO +.(11 + 0)2 2 T ... T D)mel + €
Option 1: Gradient Descent:
J=Y (v-y) --“Sum of Squares” Error 1 "
J(w) nitia

Option 2: Matrix model: Y = X8 +¢ weiht
Matrix Computation Solution:

B=(XTX)"'XTy




Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

® OddS Ratio countA("horrible")

NA
countA("horrible")
NA

1

" countB("horrible")
NB
countB("horrible")
NB

1

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

® OddS Ratio countA("horrible")

NA
countA("horrible") ) )
1 § NA countA("horrible") countB("horrible")
) NA NB
m log (1 countA("horrible") ) - log (1 countB("horrible") )
NA NB

" countB("horrible")

NB — countA("horrible”) countB("horrible”)

H— = g (A ) (comtpChomitie) )

countB("horrible") NA—countA(“horrible”) NB—countB(“horrible”)
NB

1

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible") NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

e, yi+ a v+ a
JS_ i log( [' w l‘w )_ log . w ;v
n'+ ag = (Yt @) nt + ag — (y,+ ay)

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
g NA—countA("horrible") NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

ey [+ a J 4 |a
6£ i log( N w )_ log( N i )

ni { a0 |- OnH{aw) nf H o | OiH{aw)

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible”) NB—countB(“horrible")

e 0dds Ratio using Informative Dirichlet Prior '’

Bayesian term for “smoothing”: accounts for uncertainty as a

function of less events (i.e. words observed less) by integrating
“prior” beliefs mathematically.

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible”) NB—countB(“horrible")

e 0dds Ratio using Informative Dirichlet Prior '’

Bayesian term for “smoothing”: accounts for uncertainty as a

function of less events (i.e. words observed less) by integrating
“prior” beliefs mathematically.
“Informative”: the prior is based on past evidence. Here, the
total frequency of the word.

(Monroe et al., 2010; Jurafsky, 2017)




Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA(“horrible”) NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

i J
a(i=j) _ Yw + @y Yo + Ay
6w —log(i+ s (L o )—log(j . j )
n ag — (Yt ay) nt + ag — (y,+ ay)

(n' is thesize of corpus i, n’/ isthe size of corpusj, 3, is the count of word w in corpus i, }gf is the count of word w in corpus j,
a, is the size of the background corpus, and «,, is the count of word w in the background corpus.)

2 (=7)-Y
o (SW )~ i +—
Ywt @y y, + a,

* Final statistic for a word: z-score of its log-odds-ratio:
i

(Monroe et al., 2010; Jurafsky, 2017) o? (SS"")



Natural lanquage is generated by people.

What this means for NLP:

1. Qur data are inherently multi-level.
2. Often, there are 'already-available” human attributes.

3. Qur data and modele are (human) biased.




Natural language ic qenerated by people.

What this means for NLP:

Practical implication
1) More accurate models
2) Increased fairness in applications

Congidering the people behind the language not only offers opportunities

for improved accoracies but it could be fondamental 7o ML Pe rofe in our

increasrn y/y f//y/'z‘a/ world.




