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Most NLP Tasks. E.g. 
● POS Tagging
● Document Classification
● Sentiment Analysis
● Stance Detection
● Mental Health Risk Assessment
● …  

(language modeling, QA, …

How to include extra-linguistics?

● Additive Inclusion

● Adaptive Extralinguistics

○ Adapting Embeddings

○ Adapting Models

● Correcting for bias
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● personality
● demographics
● emotional states
● political ideology

...
● linguistic style 

(Pennebaker, 2007)
● latent user traits

(Kulkarni et al., 2018)
●
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What are human “factors”?
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Adaptation Approach: Domain Adaptation
Features for:  source    target newX = []

for all x in source_x:
  newX.append(x + x + [0]*len(x))
for all x in target_x
  newX.append(x + [0]*len(x), x)

newY = source_y + target_y

model = model.train(newX,newY)



Human Factors
--- Any attribute, represented as a continuous or discrete variable, of the humans 
generating the natural language. 

E.g. 
● Gender
● Age
● Personality
● Ethnicity
● Socio-economic status
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and clinical psychologists are dimensional [continuous]” 

(Haslam et al., 2012)
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(Haslam et al., 2012)
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Main Results
Adaptation improves over unadapted baselines (Lynn et al., 2017)

Task Metric
No 

Adaptation Gender Personality

Latent 
(User 

Embed)

Stance F1 64.9 65.1 (+0.2) 66.3 (+1.4) 67.9 (+3.0)

Sarcasm F1 73.9 75.1 (+1.2) 75.6 (+1.7) 77.3 (+3.4)

Sentiment Acc. 60.6 61.0 (+0.4) 61.2 (+0.6) 60.7 (+0.1)

PP-Attach Acc. 71.0 70.7 (-0.3) 70.2 (-0.8) 70.8 (-0.2)

POS Acc. 91.7 91.9 (+0.2) 91.2 (-0.5) 90.9 (-0.8)



Example: How Adaptation Helps
Women
more adjectives→sarcasm

Men
more adjectives→no sarcasm

more “male” more “female”



Problem
User factors are not always available. 



past tweets

Known
Age (Sap et al. 2014)
Gender (Sap et al. 2014)
Personality (Park et al. 2015)

inferred factors

Latent
User Embeddings 
   (Kulkarni et al. 2017)
Word2Vec
TF-IDF

Solution: User Factor Inference



Background Size
Using more background tweets to infer factors produces larger gains
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Ethics in NLP

Types of bias in NLP tasks:

● Outcome Disparity:  Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Error Disparity: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations. 

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Two Examples

distance from “standard” WSJ author demographics

model 
accuracy

“Outcome Disparity”

“Error Disparity”

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and 
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias 
Amplification using Corpus-level Constraints." In Proceedings of 
the 2017 Conference on Empirical Methods in Natural Language 
Processing. 2017.
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Our data and models are (human) biased.
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outcome disparity
The distribution of outcomes, given attribute A, 
is dissimilar than the ideal distribution: 

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two 
different values of an attribute (A) are unequal: 

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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interaction, or latent bias 
from past classifications.

predict

Source Population 

(Model Side)

Target Population 

(Application Side)

biased 
outcomes

Ŷtarget

fit
features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A, 
is dissimilar than the ideal distribution: 

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two 
different values of an attribute (A) are unequal: 
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E.g. Coreference resolution: 
connecting entities to references (i.e. pronouns). 

“The doctor told Mary that she had run some blood tests.”



Ethics in NLP

Types of bias in NLP tasks:

● Outcome Disparity:  Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Error Disparity: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations. 

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.



Ethics in NLP

Types of bias in NLP tasks:

● Predictive Bias:  Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Bias in Error: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations. 

Work in progres; Hovy et al., 2019

E.g. Coreference resolution: connecting entities to references (i.e. pronouns). 

“The doctor told Mary that she had run some blood tests.”
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Ethics in NLP

Privacy

● Risk Categories: 
○ Revealing unintended private information 
○ Targeted persuasion

● Mitigation strategies:
○ Informed consent -- let participants know
○ Do not share / secure storage
○ Federated learning -- separate and obfuscate to the point of preserving 

privacy
○ Transparency in information targeting 

“You are being shown this ad because …”
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Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmount Report,  1979)

 (i) Distinction of research from practice. 
(ii) Risk-Benefit criteria 
(iii) Appropriate selection of human subjects for participation in research 
(iv) Informed consent in various research settings.







Natural language is generated by people.

What this means for NLP:

1. Our data are inherently multi-level.

2. Often, there are "already-available" human attributes.

3. Our data and models are (human) biased.



Approaches to Human Factor Inclusion

1. Adaptive: Allow meaning if language to change depending 
on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)

2. Additive: Include direct effect of human factor on outcome. 
(e.g. age and distinguishing PTSD from Depression)

3. Bias Correction: Optimize so as not to pick up on 
unwanted relationships.
(e.g. image captioner label pictures of men in kitchen as women) 



Example 1: Individual Heart Disease



Example 2: Twitter Language + Socioeconomics
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Model



Additive (Residualized Control)

language controls

High-dimensional, 
sparse, and noisy. 

few and 

well estimated

Challenges: 
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Effectively use both low dimensional control features and 
high-dimensional, noisy language features: 

1.Train a control model using the control values

2.Calculate the residual error and consider it as the new label

3.Train a language model over the new labels
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Additive (Residualized Control)

Effectively use both low dimensional control features and 
high-dimensional, noisy language features: 

1.Train a control model using the control values

2.Calculate the residual error and consider it as the new label

3.Train a language model over the new labels



Residualized Control vs. Combined Model
Model: 



4/5/2017

Residualized Control Model

Zamani M, Schwartz HA. Using Twitter Language to Predict the Real Estate Market. EACL 2017. 2017 Apr 3:28.



Combining Adaptive and Additive

Two Goals: 

1. Adaptive: adapt to given human attributes 
(user factor adaptation; 
Lynn, Balasubramanian, Son, Kulkarni & Schwartz, 
EMNLP 2017)

2. Additive: predict beyond given attributes  
(residualized control; Zamani & Schwartz, EACL 2017)



Solution: Residualized Factor Adaptation



variance explained (R2)

Heart Dis
Suicide
Poor Health
Life Satis.

Results: County Health Predictions



variance explained (R2)

Heart Dis
Suicide
Poor Health
Life Satis.

Results: County Health Predictions



variance explained (R2)

Heart Dis
Suicide
Poor Health
Life Satis.

Results: County Health Predictions



variance explained (R2)

Heart Dis
Suicide
Poor Health
Life Satis.

Results: County Health Predictions



variance explained (R2)

Heart Dis
Suicide
Poor Health
Life Satis.

Results: County Health Predictions

Heart Dis
Suicide
Poor Health
Life Satis.
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Data are inherently multi-level.



1,639,750 tweets from 5,226 users in 420 counties



Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A. 
(2017). On the Distribution of Lexical Features in Social Media. Annual 
Meeting of the Association for Computational Linguistics



Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A. 
(2017). On the Distribution of Lexical Features in Social Media. Annual 
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Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A. 
(2017). On the Distribution of Lexical Features in Social Media. Annual 
Meeting of the Association for Computational Linguistics



Distribution
Message User County

1-gram topic Lex. 1-gram topic Lex. 1-gram topic Lex.

Power Law .71 .10 .00 .04 .00 .00 .07 .00 .00
Log-Normal .25 .89 1.00 .96 .97 .64 .92 .86 .44

Normal .04 .01 .00 .00 .03 .36 .01 .14 .56

Proportion best fit by the given distribution.

Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A. 
(2017). On the Distribution of Lexical Features in Social Media. Annual 
Meeting of the Association for Computational Linguistics

Data are inherently multi-level.



Data are inherently multi-level.

Multi-level Attention and Sequence Model

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical 
Modeling for User Personality Prediction:The Role of Message-Level 
Attention.  Annual Meeting of the Association for Computational 
Linguistics. 



d O C E A N

BERT + 
DAN 768 .60 .51 .54 .51 .52

(Park et 
al., 2015) 5106 .63 .52 .56 .54 .53

Multi-level 
Attention 200 .63 .52 .55 .51 .54

Multi-level 
Attention 

+ Ridge
5306 .66 .54 .58 .56 .56

bold: p < .01 

Data are inherently multi-level.

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical 
Modeling for User Personality Prediction:The Role of Message-Level 
Attention.  Annual Meeting of the Association for Computational 
Linguistics. 



d O C E A N

BERT + 
DAN 768 .60 .51 .54 .51 .52

(Park et 
al., 2015) 5106 .63 .52 .56 .54 .53

Multi-level 
Attention 200 .63 .52 .55 .51 .54

Multi-level 
Attention 

+ Ridge
5306 .66 .54 .58 .56 .56

bold: p < .01 

Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020). Hierarchical 
Modeling for User Personality Prediction:The Role of Message-Level 
Attention.  Annual Meeting of the Association for Computational 
Linguistics. 

Data are inherently multi-level.



Differential Language Analysis

Input:

Linguistic features

Human or community attribute

Output: 

Features distinguishing attribute

Goal: Data-driven insights about an attribute



E.g. Words distinguishing communities with increases in real estate prices.  
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Bayesian term for “smoothing”: accounts for uncertainty as a 
function of less events (i.e. words observed less) by integrating 
“prior” beliefs mathematically. 



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

● Logistic Regression over Standardized variables

● Odds Ratio using Informative Dirichlet Prior

 

(Monroe et al., 2010; Jurafsky, 2017)

Bayesian term for “smoothing”: accounts for uncertainty as a 
function of less events (i.e. words observed less) by integrating 
“prior” beliefs mathematically. 
“Informative”: the prior is based on past evidence. Here, the 
total frequency of the word.



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

● Logistic Regression over Standardized variables

● Odds Ratio using Informative Dirichlet Prior

 

(Monroe et al., 2010; Jurafsky, 2017)
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Natural language is generated by people.

What this means for NLP:

1. Our data are inherently multi-level.

2. Often, there are "already-available" human attributes.

3. Our data and models are (human) biased.

Practical implication

1) More accurate models

2) Increased fairness in applications

Considering the people behind the language not only offers opportunities
for improved accuracies but it could be fundamental to NLP's role in our 
increasingly digital world. 


